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TABLES OF OCTIC FIELDS WITH A QUARTIC SUBFIELD 

H. COHEN, F. DIAZ Y DIAZ, 'AND M. OLIVIER 

ABSTRACT. We describe the computation of extended tables of degree 8 fields 
with a quartic subfield, using class field theory. In particular we find the 
minimum discriminants for all signatures and for all the possible Galois groups. 
We also discuss some phenomena and statistics discovered while making the 
tables, such as the occurrence of 11 non-isomorphic number fields having the 
same discriminant, or several pairs of non-isomorphic number fields having the 
same Dedekind zeta function. 

1. INTRODUCTION 

The construction of tables of number fields has a long history, and is useful 
in two ways. First, to test the algorithms available for such constructions, and 
second and probably most importantly, to give to researchers a vast amount of 
data that they can examine and on which they can make conjectures. Large tables 
are now available on the internet by anonymous ftp, either from the Kant group 
(ftp.math.tu-berlin.de) or from our group, the Pari group (megrez.math.u- 
bordeaux. fr). 

The tables are built in the following way. In degree 2, we simply need to find 
squarefree numbers up to a certain bound, and considering the bounds that we must 
take to be realistic, this is not a problem. In degree 3, it was previously thought 
that only the general methods were available, but it was observed recently by K. 
Belabas (see [Be]) that one can adapt methods of Davenport and Heilbronn to the 
algorithmic construction of cubic fields in time comparable to that of quadratic 
fields. Thus, computation of tables of cubic fields is now also easy (tables have 
been built up to discriminant 1011). In higher degrees, the only methods known 
to construct general tables of number fields are based on the geometry of numbers. 
These methods are highly inefficient, since they require looking at orders of mag- 
nitudes more polynomials than necessary, but they are the only ones available in 
general. Large tables exist for degrees 4, 5 and 6, small tables in degree 7, and in 
degree 8 only the first few minima are known in signatures (8, 0) and (0, 4), and the 
minima for the other signatures are not even known without assuming the GRH. 

If one considers imprimitive fields, the situation improves considerably, since, 
thanks to a relative version of the theorem used in the absolute case due to J. 
Martinet, we can do all our work using relative data. For example, although it 
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required a huge amount of work, we now have large tables of degree 9 fields con- 
taining a cubic subfield (see [Di-Ol]). One could reasonably do this for degree 8 
fields containing a quadratic or quartic subfield, but it has not been done. 

Another approach to the computation of imprimitive fields is to use class field 
theory. Recall that class field theory gives an explicit description of all finite Abelian 
extensions of a number field. Thus, for example, we can use class field theory to 
compute all quadratic extensions of a given dbase field, since such extensions are 
Abelian, and this is what will be described in this paper when the base field has 
degree 4, thus giving number fields of degree 8. One could of course also apply this 
to base fields of degree 2 or 3 (but extensive tables have already been done in this 
case), or to base fields of degree larger than 4. 

In the following sections, we describe the methods used for constructing the 
tables, and then give a number of observations, statistical or otherwise, obtained 
when constructing the tables (some of these observations are not visible on the 
tables themselves, but were made during the construction of the tables). 

2. CONSTRUCTION OF THE TABLES 

(A). Results from class field theory. We give the definitions and results "a 
la Hasse", i.e., without using ideles. This is much better suited to algorithmric 
practice. See [Ha] and a forthcoming book by the first author. 

Let K be a fixed base number field. For any modulus m (i.e., a pair formed by 
an integral ideal mo and a set of real places m,, of K), let Im (K) be the group 
of fractional ideals of K coprime to m, let Pn (K) be the group of principal ideals 
generated by an element a- I (mod *m), and let Clm(K) -- IL,(K)/P, (K) be the 
ray class group. 

A congruence subgroup is any group of ideals C such that Pm(K) C C C Im(K). 
One of the fundamental theorems of class field theory tells us that equivalence 
classes of pairs (m, C) (for a suitable equivalence relation) are in canonical one-to- 
one correspondence with K-isomorphism classes of finite Abelian extensions L/K, 
satisfying in particular 

Gal(L/K) -Im(K)/C -- Clm(K)/C, where C = C/Pm(K). 

In [Co-Di-Ol], we described an efficient method to compute the ray class group 
Cl0m(K), and to compute the discriminant (relative or absolute), signature and 
conductor of the corresponding Abelian extension as above. Briefly we proceed as 
follows. We first note the following (easy) exact sequence: 

U(K) -* (7K/m)* * Clm(K) -* Cl(K) > 1. 

We fist compute the ordinary class group Cl(K) and unit group U(K) using the 
methods that can be found in [Co] or in [Po-Za]. We then compute (ZK/m)* using 
the methods explained in [Co-Di-Ol]. Finally, using the methods explained in that 
paper for dealing with exact sequences which are not necessarily split, we obtain a 
complete description of the group Clm (K) by minimal generators and relations. 

Let (m, C) be a congruence subgroup and let L/K be the Abelian extension 
which corresponds to (m, C) by class field theory. Assume that m is the conductor, 
i.e., that (m, C) is minimal in its equivalence class. We know in particular that 
Gal(L/K) Clm(K)/C, and that the prime ideals of K which ramify in L are 
exactly those dividing m. We also know precisely the signature and discriiniinant of 
L, thanks to the following theorem proved in [Co-Di-Oll. 
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Theorem 1. Let L/K be the (equivalence class of) an Abelian extension corre- 
spondirng to the congruence subgroup (m, C) by class field theory, where m is not 
necessarily assumed to be the conductor. 

Denote by D(L/K) the relative discriminant ideal of L/K, and write 

-O fJpV. 

For any divisor n of m, let h1,,c be the cardirnality of Cl,(K)l/s(C), where s is the 
natural surjection fromn Clm(K) to CLIL(K) (in particular, [L: KI = hm0g). Then 
Do(L/K)-Hp | mO pa,? with 

ap, vph,c; Z hm/pi,C. 
1<i<vp 

If, i'n addition, mZ is the conductor, we have the followirng: 
(1) If hm?.C0 = [L: KI] = f is prime, then Do(L/K) = me-. 
(2) Denote by rnm, the number of real places irn the modulus m, and by (rl, r2) 

(resp. (R1, R2)) the signature of K (resp. L). Then R2 - hm,c(mn,,/2 + r2). 
(3) The absolute discrimirtnant d(L) is given by 

d(L) - (_l)m(c,hil,,C/2d(K)hnCAv(-D(L/K)). 

(B). Finding all suitable pairs (m, C). Let K be a fixed quartic field and let L 
be an octic field obtained by class field theory as a quadratic extension of K corre- 
spondinig to the pair (m, C). Since we will restrict to the case where m is the conduc- 
tor, Theorem 1 tells us that mO (L/K), hence that Id(L)] d(K)2N7yQ(mo). 
Thus, if we want to compute octic fields such that Id(L) < B for a certain bound 
B, it is enough to consider all quartic fields K such that Id(K) I < B1/2, and for 
each such quartic field all moduli such that jfK/qi(mo) < B/d(K)2- Futhermore, to 
obtain the correct signature, we have to include in m exactly the correct number of 
ramified real places (more precisely, if we want R1 real places in L, we must take 
K with ri > R1 /2 real places and exactly r1 - R1 /2 of those real places dividing 
mi). 

For a given quartic field K, we construct all integral ideals of norm up to a given 
bound by a recursive procedure similar to the sieve of Erathosthenes. We initialize 
the procedure by saying that there is a single ideal of norm 1, i.e., 7Z,. Then, 
we split each prime number up to the bound into a product of prime ideals in K, 
and multiply each of the already obtained ideals by successive powers of the prime 
ideals, as long as the norm of the results are less than the given bound. This gives 
a very efficient procedure, although the amount of storage can become large (for 
some of our computations, we have had to use a bound close to 106, and this can 
give storage of several hundred megabytes). 

For each of the moduli, we then compute the class group Cl0(n(K) using the 
method explained in [Co-Di-Ol]. We can also do this in a similar recursive procedure 
to speed up the computation. Furthermore, since we do this recursively, it is easy 
to eliminate from the list of moduli those for which (m, Pm,) is not a conductor. 
Indeed, a very easy lemma tells us that if m is the conductor for some congruence 
group C, then it is the conductor for Pm. 

For each remaining modulus m, we compute all the subgroups C of Cl0(K) of 
index 2, using the method explained in [Co-Di-Oll. If E is the diagonal matrix 
in Smith normaal form giving the structure of Cl,,,(K), this amounts to finding all 
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integer matrices H in Hermite normal form such that H-1E is an integer matrix, 
and det(H) = 2. If the diagonal entries of E are (ei) with ei+11ei, let r be the 
largest index such that ei is even (O if none exist), so that r is equal to the 2-rank 
of Clm(K). It is easy to show that the possible matrices H = (hi,j) are exactly those 
matrices such that there exists an integer io satisfying the following conditions: 

(1) io < r. 
(2) hi,i 1if i #& io and hio,io = 2. 
(3) h-0j = 0or 1 if io <j <r. 

(4) hij 0 for all other pairs (i, j). 
There are 2' - 1 such matrices, corresponding to the 2' - 1 subgroups of index 

2 of a group of 2-rank equal to r. We keep only the subgroups C for which m is 
equal to the conductor of (m, C). 

By class field theory, the pairs (m, C) thus found are in one-to-one correspondence 
with K-isomorphism classes of quadratic extensions of K. Note that, even though 
two different pairs will correspond to two fields L which are not K-isomorphic, 
they may of course be Q-isomorphic. Furthermore, different quartic fields may 
give isomorphic octic fields. However, at this state we do not worry about this 
problem, since, unlike the methods using the geometry of numbers, the number of 
polynomials that we will have to remove because of isomorphisms will not be very 
large. 

(C). Finding the polynomial equations. For a given base quartic field K, we 
now have a large number of pairs (m, C), and we know that m is the conductor of the 
equivalence class of (m, C). We must find the relative and absolute equations of the 
quadratic extension L/K corresponding to (m, C). We do this by using Kummer 
theory, which is the standard method for this kind of computation (although if K 
is totally real, we can also use Stark's conjecture, see [Ro]). Here we are in a very 
favorable case, since the square roots of unity are already in our field K, so we do 
not need to adjoin them. 

We need some notation. 
If p is a prime ideal of K, let z(p) = 2e(p/2) + 1, where e(p/2) = 0 when p is not 

a prime above 2. 
We define seven sets of prime ideals associated to m as follows: 

(1) Sm,J (resp. Sm,2, resp. Sm,3) is the set of prime ideals p of K which Aivide both 
2 and mn, and such that vp(m) = z(p) (resp. vp(m) < z(p), resp. vp(m) > z(p)). 

(2) S2 (resp. Sm) is the set of all prime ideals dividing 2 and not m (resp. dividing 
m and not 2). 

(3) So is the set of all prime ideals dividing neither m nor 2. 
(4) S = Sm U Sm,i 

Let 
9 

Cl(K) = ((/diZ)ai 
i=l1 

be the ordinary class group of K, where the di are ordered so that d2+i1di, and 
assume that the representatives of the ideal classes ai are chosen to be integral 
ideals coprime to the ideal 2m (this can always be done). Let ai be elements such 
that a.di aIZK. These a- can easily be found using the solution to the principal 
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ideal problem (see [Co]), and by our assumption will be coprime to m. Let h be the 
largest index (O if none exist) such that di is even. 

For each p E S, we can write 

p = 3 p 11 , 
1<i<g 

again by using the solution to the principal ideal problem. 
By Theorem 1, since m is the conductor and the relative degree is equal to 2, the 

relative discriminant D(L/K) is equal to m. Using Hecke's theorem on ramification 
in Kummer extensions of prime degree, it is not difficult to prove the following 
theorem (see for example [Co-Di-Ol]). 

Theorem 2. With the above notation, let L/K be a quadratic extension of con- 
ductor equal to m. We have L K(Xa), where a is of the following form: 

a e H ni f p 

l<i<h pES 

and c is a unit. 
In addition, the following conditions must be satisfied: 

(1) Sm,3 = 0. 
(2) If p E Sm,2, then vp(m) > 2. 
(3) If p E Sm, then v(p(m) = 1. 
(4) For all i < h, we must have EpEsPi,p_ 0 (mod2). 
(5) For all i < h, we have n0 = O or 1. 
(6) For p E Sm,2, the largest k such that the congruence 

x - a(mod1 ) 

has a solution must be equal to z(p) - vp (m). 
(7) For each p E S2, the congruence 

x2-a (modrpz(P)- 

has a solution. 
(8) For each o- E mO, we have o(ja) < 0, while for each embedding (J such that 

n mt, we have ou(a) > 0. 
(9) a f (K*)2 (this condition is necessary only if m = ZK). 

Conversely, if aZ is chosen as above and the conditions are satisfied, then L/K 
is a quadratic extension of conductor equal to m. 

The solubility of the congruences needed in the above theorem can easily be 
established by computing the structure of the groups (2K/pk)* as explained in 
[Co-Di-Ol]. 

If all the conditions are satisfied, then K(Xa) will be a quadratic extension of 
K which has the correct signature and relative discriminant D(L/K). However, it 
may not be the field that we are looking for, since we must also ask that its norm 
group be equal to C. 

To terminate, for each a that we find we compute the norm group of K(Wa) and 
we check that we obtain once and only once all the subgroups of Im(K) of index 2 
(otherwise there is an error), and this tells us precisely which group corresponds to 
which a. If we do not care about the norm group, we do not need to do this, since 
we know by class field theory that up to squares there will be exactly the same 
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number of a as subgroups of index 2 and conductor m of Im (K). Thus, to check 
the correctness of our computations, it is sufficient to check that the number is the 
samne, not the exact correspondence. Note also that it is quite easy to compute the 
norm group explicitly by using its characterization in terms of the decomposition 
of unramified prime ideals. 

Once we know that L = K(Xa), it is a trivial matter to find the absolute equa- 
tion of L/Q. This equation usually has quite large coefficients, and we then use a 
strong polynomial reduction algorithm (analogous to the Polred algorithm described 
in [Co-Di], but searching for minima using the Fincke-Pohst algorithm, instead of 
simply small vectors using LLL), and we finally obtain an absolute equation with 
quite small coefficients. 

(D). Removing isomorphisms. We now have a large list of degree 8 polynomials 
(in our tables, we chose the bounds so as to have between 13000 and 18000 polyno- 
mials at this stage). We must remove the polynomials defining isomorphic number 
fields over Q. The use of the strong polynomial reduction algorithm mentioned 
above is already a very big step in this direction, since it is not frequent that two 
different strongly reduced polynomials define isomorphic number fields, although it 
may of course happen. 

We sort the table according to increasing absolute value of discriminant, and 
for two entries having the same discriminant, we do the following. If the reduced 
polynomials are the same, evidently the fields are isomorphic, so we remove one 
of the two. Otherwise, we factor the two polynomials modulo small primes not 
dividing the indices of one or the other (so that the factorization modulo the prime 
reflects the factorization into prime ideals). If the factorizations differ, the fields 
are not isomorphic. If they are equal, then we use an absolutely certain but slow 
method, i.e., we factor one polynomial in the number field defined by the other. 
Once this is done, we also compute the Galois group of the Galois closure of the 
corresponding number field, since we will be interested in this later. 

It must be noticed that our method using class field theory is much less wasteful 
than the methods based on the geometry of numnbers also with respect to isomor- 
phisms: in our methods, we rarely found more than two distinct polynomials defin- 
ing isomorphic number fields, while in methods based on the geometry of numbers, 
there are usually many more isomorphic fields. . 

In fact, using our methods, we can find distinct polynomials defining isomorphic 
number fields only when the octic field contains at least two non-isomorphic quartic 
fields, and this rarely happens. 

In performing this routine and apparently uninteresting task, we stumbled onto 
two quite interesting phenomena. 

First, fields which cannot be distinguished by prime factorizations alone are 
rare, but do occur. In fact, we have looked closely at these examples, and they are 
all arithmetically equivalent fields, i.e., number fields having the same Dedekind ( 
function. We refer to the literature on the subject (see [Ga], [Pe]), but we note the 
following. 

Even though equality of the ( function implies the equality of many arithmetic 
quantities, it does not imply the identity of the ramification exponents, only the 
residual indices. We have several examples of arithmetically equivalent fields which 
can be distinguished by factoring a ramified prime. 
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In addition, it is well known that arithmetic equ-ivalence is a purely group- 
theoretical. property. In the case of degree 8 fields, one can show that there are 
exactly two Galois groups amoong all the possible 50 transitive groups of degree 8 
having this property (see below). These are the groups 'Hol(C(s) (denoted T15 in 
[Bu-Mc]) of order 32, equal to the semiiidirect p?roduct of the cyclic groulp Cs by its 
group of automorphisms acting in the natuiral way, and the group GL2(F3) (denoted 
T23 in [Bu-Mc]) of order 48. 

A list of these fields will be given in the next section (see Tables 8-14). 
The second phenomenon we have observed (and which we call the "Inirror effect") 

is that in many cases, certain simn.ple chainges on the polynomnial coeffici-ents miodify 
the signature without modifying the Calois group. This will be described in detail 
below (see Section 3 (B)(3)). 

3. DESCRIPTION OF THE TABLES 

(A). Length of the tables. We have chosen the discrirninant bounds so that the 
tables are roughly of the same length, and contain at least 10000 non-isomorphic 
octic fields. As indicated above, there are very few isomorphic number fields cor- 
responding to distinct polynoinials, hence we could easily judge at an early stage 
whether ou.r bounds were sufficient. 

Table 1. gives the chosen bounids, as well as the nu.mber of non-isomorplhlic octic 
fieldis up to that bound, corresponcding, to the five possible signatures. 

(B). Galois groups. We have computed the Galois group of every octic fieldl that 
we have found, using the methods described in [Ei] and [Ei-Ol]. The Galois groups 
which we obtain are necessarily among those corresponding to octic fields containing 
a quartic subfield., and this corresponds to 36 of the 50 possible Galois groups in 
degree 8 (see the table in signature (0, 4) or (8, 0) for the complete list). 

Even though we found maany octic fields, there was no reason to expect that 
we would find all the possible combinations of signatures and Galois groups, and 
indeed we found only 97 of the 114 possible combinations. 

For the 17 missing ones, we used several methods. 
We first looked for an example of a field having the desired signature and Galois 

grou.p. The discriminant of this field gave us a (possibly quite large) upper bound 
for the minimal discrimninant. We then used a systemiatic search up to this bound 
as was done for the main tables, using the specific properties of the group that we 

ITABLE 1 

Signature Bound for discriminants Nunmber of non- 
isomorphic fields 

(0,4) 5000 00000 11639 

(2,3) -16000 00000 12301 

(4,2) 3500000000 13077 

(6,1) -5 00000 00000 11680 

(8,0) 25 00000 00000 13796 
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were looking for. For example, the search was greatly simplified when the group 
was even since we needed to use only quartic fields with square discriminant. 

The methods we used to find at least one example were the following. 

(1) Specializations of the parametrized solutions given in the literature, for ex- 
ample in [Sm]. Of course, these solution's do not necessarily have the correct 
signature. 

(2) Particular polynomials found in the literature. More precisely, we checked 
that the minimal discriminant for the Galois group T+ and signature (0, 4) is 
indeed as given by S.-H. Kwon in [Kw]. On the other hand, the discriminant 
for the Galois group T23 and signature (0, 4) given by A. Jehanne in [Je] gives 
us an upper bound but is not minimal. 

(3) The "mirror effect" already mentioned above: an octic field L having a quartic 
subfield K can be defined by an even polynomial P(X2) E Z[X]. Let D be 
a rational integer such that D is not in the Galois closure N of L over ?, 
and denote by G the Galois group of the extension N/Q. The field obtained 
by adjoining to the rationals the roots { ?01, ?02, ?03, ?04} of P(X2) as well 
as D is Galois over Q, and its Galois group is isomorphic to G x C2. In 
this group, the intersection of the stabilizers of the elements DOj is trivial 
if there does not exist ca E G such that u(O,-) = -j for j = 1, 2, 3,4, and it is 
equal to H = {(1, 1), (v, 1)} 0 C2, otherwise. In this case, since a- is a central 
element in G, we have (G x C2)/H C G as an abstract group. 

Thus, replacing P(X2) with P((X D)2) = P(DX2) gives a polynomial 
whose Galois group is (as an abstract group) isomorphic to G x C2 in the first 
case above, and to G in the second case. 

Using this, one can prove (Y. Eichenlaub, personal communication) that 
the Galois group of the Galois closure of L/Q is not changed except when G 
is the group T4+ (resp. T,+4) in which case the new group becomes T4+ or T+ 
(resp. T+). 

The most useful case of the above transformation corresponds to D =-1. 
In that case, starting with an octic field of signature (rl, r2), we obtain an 
octic field of signature (ri, r') with the following possibilities. If r1 = 8, we 
obtain r' = 0. If r1 = 6, we obtain rj = 2. If r1 = 4, we can have r' = 4 or 

0. If r1 = 2, we can have r' = 2 or r' = 6. Finally, if r1 = 0, we can 
have r' = 0, r= 4 or r' = 8. 

(4) The direct study of the group structure. For example, the group T1+4 is the 
group S4 considered as a transitive group of degree 8. It is not difficult to prove 
that an octic field having such a Galois group is obtained by taking a quartic 
field of Galois group S4, and adjoining the square root of the discriminant of 
the quartic field (which of course belongs to the Galois closure). 

(5) Pushing this idea further, we adjoined to quartic fields square roots of divisors 
of the discriminant, and we obtained in this way practically all the missing 
groups and signatures. 

For all signatures and for all possible Galois groups of the Galois closure corre- 
sponding to this signature Tables 2-6 give the following. 

(1) The name of the Galois group in the notation of [Bu-Mc]. We chose not to 
use the more recent (but more complex) notation of [Co-Hu-Mc]. 
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TABLE 2. Signature (0,4) 

|G | | dmin TG |# | dmin ||G |# | dmin 

T1 0 2147483648* T1+3 9 17850625 T26 26 18753525 

T2+ 14 12 65625 T1+4 13 6.08 86809 T27 592 15 78125 

Tj+ 10 5308416 T15 8 31443200 T28 20 37879808 

T4L 31 17 50329 T16 5 94 53125 T29 201 35 04384 

T5+ 0 1 22305 90464* T17 55 12 57728 T30 1 2153 78125 

T6 14 41 02893 T18 194 60 36849 T31 1017 15 13728 

T7 0 51200 00000* T1+9 3 67108864 T32 0 11424 40000* 

T8 0 10 49633 09568* TZ 7 26265625 T35 4194 13 27833 

Tq+ 209 3211264 T21 7 335 54432 T38 4 167186432 

Tljo 27 18 90625 T2+2 31 25401600 T3+9 262 42 27136 

TA+j 38 32 40000 T23 0 3 39710 01237* T40 10 12008989 

T12 0 7059 11761* T24 510 17 63584 T44 4127 13 61513 

TABLE 3. Signature (2,3) 

[G ]# dmin G I# dmin G # dmin 

T6 18 -42 86875 T26 51 -74 86875 T35 2798 -44 61875 

T8 5 -1071 71875 T27 40 -746 71875 T38 0 -49413 82327* 

T15 20 -409 60000 T30 18 -214 34375 T40 25 -226 65187 

T23 46 -22665187 T31 21 -793 60000 T44 9259 -4711123 

TABLE 4. Signature (4,2) 

cG # | _dmin || GC # [ dmin |T G{ # | dmin_ _ 

T7 2 56953125 T2+0 12 268435456 T31 50 104960000 

T9+ 60 409 60000 T21 0 88305 03125* T3+2 0 4 51783 52704* 

TZ+ 25 64000000 T2+2 15 368640000 T3 | 2899 173 18125 

Tl+l 16 23040000 T2+4 34 39375625 T38 0 56472 94088* 

T15 0 1 1662589952* T26 7 321978368 T3+9 576 20502784 

T16 3 320000000 T27 105 71303168 T40 0 7495014493* 

T17 6 15243125 T28 67 31878125 T44 8515 15297613 

T1+8 183 193 60000 T2+9 188 25755625 

T1+9 0 2 7710263296* T3 0 4 1076890625 
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(2) The number of non-isomorphic number fields having this Galois group and 
signature in the limits of our main tables. In particular, when the minimal 
discriminant was obtained by specific methods (indicated by *), the corre- 
sponding number is 0. 

(3) The minimal discriminant (in absolute value) corresponding to this Galois 
group. 

(C). Non-isomorphic fields having the same discriminant. We have ob- 
served that non-isomorphic fields having the same discriminant occur very fre- 
quently. In the limits of our tables, the maximum number observed is a set of 11 such 
fields in signature (0, 4). This corresponds to discriminant 4840 00000 = 28 56 . 112. 

TABLE 5. Signature (6,1) 

G G# dmill #l-nin 
T27 1205 -74671875 T35 5657 -688 56875 T44 4045 -103405923 

T31 764 -249495552 T38 9 -49413 82327 

TABLE 6. Signature (8,0) 

[Ga # dmin ] G [ # | dmin |[ G] # | dn_iiii l 
T1 3 4103 38673 TI l 3 6 05238 72256 T26 12 25760 88125 

T2 28 3240 00000 T4 0 82 13869 40416* T27 1407 12922 03125 

T3 9 33177 60000 T15 6 1194356 44125 T28 57 81608 00000 

T4j 20 4420 50625 T16 3 4 78975 78125 T29 100 5069440000 

T 1 122305 90464 T17 49 2823 00416 T30 4 12 39119 40625 

T6 8 59101 06112 T18 163 41634 75625 T31 795 19481 60000 

T7 8 51200 00000 Tl9 1 8 75781 16096 T3 0 315 03303 56889* 

T8 3 1 60984 53125 T20 13 1 48840 00000 T35 6139 3095 93125 

Tq+ 142 1534132224 T21 1 17 51562 32192 T38 6 6 28261 46729 

Tljo 79 10643 90625 T2+2 8 1 80633 60000 T39 125 52400 22544 

TAl 43 4326 40000 T23 8 2 14154 71433 T40 0 46 31434 05393* 

T12 6 58873 39441 T24 295 23936 55625 T44 4251 1152784549 

TABLE 7 

Signature| 2 ] 3 ] 4 ] 5[ 6 7 8 9 10 111 

(0,4) 2009 134 210 22 15 6 12 1- 4 1 

(2,3) 2775 92 307 9 18 2 12 0 2 0 

(4,2) 1799 141 108 7 14 3 3 1 0 0 

(6,1) 1868 169 288 6 12 7 10 0 0 0 

(8,0) 1160 28 35 1 0 0 0 0 0 0 
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Below we give the eleven polynomials defining these fields, together with their Ga- 
lois group: 

P1(X)= X8 _ X6 + X4 + 24X2 + 16: T+ 
P2(X)= X8 - 7X6 + 34X4- 88X2 + 121 rP+ 

P3(X)= X8 + X6 + 16X4 + 66X2 + 121 T1+ 

p4(X) = X8 X6 + 16X4 - 66X2 + 121 :T1+ 
P5(X) = X8 + 5X6 + 20X4 + 50X2 + 25 T1+ 
P 6(X) = X8 + 4X6 + X4 + 4x2 + 1: T1+ 

P7(X) = X8 + 7X6 + 19X4 + 28X2 + 16 T1+ 
P8(X)= X8 _ 12X6 + 64X4 - 143X2 + 121 T2+ 

P9(X) = X8 + 12X6 + 64X4 + 143X2 + 121 T2+ 

Plo(X) = X8 _ 11X6 + 51X4 - 121X2 + 121 T2+ 

Pl(X) = X8 + 11X6 + 51X4 + 121X2 + 121 T2+ 

Observe once again in this table the "mirror effect". For the polynomials P3, P4, 
P8, P9, Plo and PF1, changing X into X -1 changes the number field into a non- 
isomorphic one having the same discriminant, Galois group and signature. For the 
polynomials P5, P6 and P7 (having Galois group T1+), it changes the number field 
into a number field having the same discriminant and Galois group, but in signature 
(4,2). For the polynomial P1, we obtain a reducible polynomial, but this is clearly 
irrelevant to the problem. Finally, for the polynomial P2, it changes the number 
field into a number field having the same Galois group and the same signature, but 
a discriminant which is 256 times smaller. Different choices for D would lead to 
similar results. 

Since we have obtained 3 fields having the same discriminant and Galois group 
in signature (4,2) by using the mirror effect, we observed in our tables that in 
signature (4,2) there are two more number fields having the same discriminant: 

X8- 5X6 + 5X4 - 25X2 + 25: T1t 

x8-3X6 + 4X4- 7X2 + 1: T1%. 

Note that in certain cases (but not in thV examples that we have just given), we 
could obtain isomorphic number fields by this method. 

Table 7 gives, for each signature, the number of doublets, triplets, etc. of non- 
isomorphic number fields having the same discriminant. 

(D). Arithmetically equivalent fields. In this section we give all the examples 
of non-isomorphic octic fields having the same Dedekind (-function found in the 
tables (such fields are called arithmetically equivalent). 

The following theorem gives a necessary and sufficient condition for the existence 
of arithmetically equivalent fields (see [Ga]). 

Theorem 3. Let K1 and K2 be two number fields (assumed to be in a fixed alge- 
braic closure of ?Q). The fields K1 and K2 are arithmetically equtivalent if and only 
if the following two conditions are satisfied. 
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(1) The fields have a common Galois closure N. 
(2) Let G = Gal(N/Q), GI = Gal(N/KI) and G2 = Gal(N/K2). Then for each 

conjugacy class C in G, we must have i G n c= G2 n c (where I I denotes 
cardinality) . 

From this theorem, it is not difficult to deduce the following (Y. Eichenlaub, 
personal communication). 

Corollary. If K1 and K2 are non-isomorphic arithmetically equtivalent octic fields, 
their Galois group is isomorphic to T15 or to T23. Conversely, if an octic field K1 
has a Galois group isomorphic to T15 or to T23, then there exists a non-isomorphic 
field K2 arithmetically equtivalent to K1. 

Since T15 cannot occur in signature (6,1), we cannot have arithmetically equiv- 
alent fields with such a Galois group in that signature. Within the limits of our 
tables, we found no example in signature (4,2), but the desired (minimal) example 
was found during the search for the minimal discriminant with Galois group T15. 

Similarly, T23 cannot occur in signatures (4,2) and (6,1); hence we cannot have 
arithmetically equivalent fields with such a Galois group in these signatures. Within 
the limits of our tables, we found no example in signature (0,4), but the desired 
(minimal) example was found during the search for the minimal discriminant with 
Galois group T23 using the upper bound from [Je]. 

In Tables 8-14, we give for each signature all the examples found within the 
limits of our tables (plus the example of T15 in signature (4, 2) and T23 in signature 
(0,4)). For each pair of fields having the same (-function, we give octic polynomials 
generating the corresponding fields. In some cases, ramified ideals do not have the 
same decomposition as a product of prime ideals in both fields. When this occurs, 
we denote by p, p',... prime ideals of residual degree equal to 1 and by q, q',... 
prime ideals of residual degree equal to 2. 

Within the limits of our tables, we have found two examples of quadruplets of 
number fields having the same discriminant, signature and Galois group, forming 
two pairs of arithmetically equivalent fields (all having T23 as Galois group). These 
examples occur for discriminants -150730227 and -1327373299. 

Two arithmetically equivalent fields have the same product h(K)R(K) of the 
class number by the regulator. Since the class number is very often equal to 1, 
it is usually the case that the class numbers and the. regulators are equal. It has 
however been noticed by several authors (see, for example, [Sm-Pe]) that the class 
numbers (hence the regulators) of arithmetically equivalent fields may be different. 

Two of the 18 pairs of arithmetically equivalent fields with T15 as Galois group 
that we have found give such examples. Both are in signature (2,3). The pairs are 
for discriminant -518711875 and -1097440000, for which the second field given 
below has class number 2 while the first has class number 1. In both of these cases, 
the narrow class numbers of the fields coincide and are equal to 2. 
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TABLE 8. Signature (0, 4) Group T15 

dK Polynomial DiffQrerkt 
factorisation 

31443200 X8 - X6 - 4X5 -2X4 + 4X3 + 12X2 + 6X + 1 5ZK =p2p'2qq' 

17ZK - P2p/ piq2 

31443200 X8 - 2X7 + 3X6 - 6X5 + 13X4 -20X3 + 21X2 - 14X + 5 5ZK P 2P/Pi/q2 

17ZK = p2p,2p,,2q 

70304000 X8-4X7+7X6-2X5-8X4+8X3+2X2 -4X+1 5ZK = p2p/2p/"2q 

13ZK = P 2P,Pq2 

70304000 X8 + X6 - 2X5 + 5X4 -2X3 + X2 + 1 5ZK = P "2PPq2 

13ZK = p2P/2p//2q 

143327232 X8 + 6X6 + 15X4 + 12X2 + 3 

143327232 X8 + 3X4 + 3 

212556032 X8 - 4X7 + X6 + 8X5 + 5X4 - 14X3 - 13X2 + 4X + 17 

212556032 X8 - 2X7 + 5X6 - lOX5 + 23X4 - 36X3 + 51X2 - 48X + 17 

TABLE 9. Signature (0, 4) Group T23 

| dK |Polynomial |Different 
dl Polynomil Ifactorisation 

33971001237 X8 - 4X7 + 8X6 _ 9X5 + 27X4 - 39X3 + 35X2 - 17X + 7 3ZK = p3p3q 

33971001237 X8 - X7 -X5 + 25X4 - 54X3 + 50X2 -8X + 9 3ZK 
= 

flq3 

TABLE 10. Signature (2,3) Group T15 

dK Polynomial faftretn 

-40960000 X8 + 4X6 + 5X4 + 2X2 - 1 

-40960000 X8 - X4 - 1 

-131274675 X8 - X7 + X6 - 4X5 + X4 -4X3 + X2 - X + 1 5ZK =p2p-2qq 

-131274675 X8 - 2X7 + 4X6 - 5X5 + X4 -5X3 + 4X2 - 2X + 1 5ZK p2p1pi"q2 

-342102016 X8 + 8X4 - 1 

-342102016 X8 + 4X6 + 5X4 + 2X2 - 4 

-359661568 X8 - 4X6 - 4X5 + 2X4 - 2 72K 2p/2p,2q 

-359661568 X8 - 4X5 + 8X3 + 4X2 + 4X + 1 72K =p2p/pq2 
-518711875 X8 - 6X6 - X5 + 4X4 + 13X3 + 9X2 + 1X - 5 19ZK p2p/2p,2 , 

-518711875 X8 -X7 - 6X6 + 8X5 + 11X4 - 15X3 - 29X2 + 55X - 25 192K = p2p/P,,q2 

-1024000000 X8 - 15X4 - 50X2 - 25 

-1024000000 X8 + 5X4 - 25 

-1097440000 X8 - 5X6 + 3X4 + 15X2 - 19 19ZK 
= 

p2p/ p/q2 
-1097440000 X8 + 5X6 + 3X4 - 15X2 - 19 192K = 

p2p,2p,,2q 

-1119744000 X8 -2X7?X6 -8X5+X4-8X3+X2 -2X+1 5ZK = 
p2p/p"q2 

-1119744000 X8 -2X7+X6 +4X5 -5X4 +4X3 +X2 -2X+ 1 5ZK =2P/2P 2,2q 

-1344252672 X8 - 3X6 + 6X2 - 3 

-1344252672 X8 + 3X6 - 6X2 - 3 

-1517535243 X8 - X7-5X6 + 8X5 + 4X4-25X3 -5X2 + 11X-5 172K - 2P/Pq2 

-1517535243 X8 - X7 + 4X6 - X5 + 7X4 - 1oX3 -8X2 + 14X-l5 17K = P2P/2P"2q 



1714 H. COHEN, F. DIAZ Y DIAZ, AND M. OLIVIER 

TABLE 11. Signature (2, 3) Group T23 

dK Polynomial | Diffe.rent | dK [ Polynomial { 
factorisation 

-22665187 X8 - X7 + X6 - 2X5 + X4 - 9X3 + 7X2 -6X + 

-22665187 X8 - 3X7 + 4X6 - 8X5 + 8X4 X3 + 2X2 - 3X - 1 

-32019867 X8 -4X7 + 7X6 -7X5 + 7X4 -7X3 + 2X2 + X- 1 32K = p2q3 

IIZK = P 3p/3q 

-32019867 X8 - X7 + X6 -2X5 -X4 -2X3 + X2 -X + 1 3ZK = p6q 

IIZK = PP'q3 

-36264691 X8 - 4X7 + 5X6 - X5 - 3X4 + 3X3 - X -1 

-36264691 x8 - 2X7 + 3X6 - 7X4 + 17X3 - 17X2 + IIX - 1 

-81415168 x8 - 4X7 + 8X6 - 8X5 + 6X3 - 2X2 - 2 

-81415168 X8 - 4X7 + lOX6 - 14X5 + lOX4 + 2X3 - lOX2 + 8X - 2 

-110716875 X8 -4X7 + 5X6 - X5 -2X4 + X3 + 4X2 - 4X-1 3ZK = p6q 

5ZK =PP'q3 

-110716875 X8 - 4X7 + 7X6 - 7X5 + 4X4 - X3 - 4X2 + 4X - 1 3ZK 2q3 

5ZK = P3p/3q 

-118370771 X8 - 2X7 - X5 + 7X3 + X - 9 

-118370771 X8 - 3X7 + 7X6 - lOX5 + 11X4 - 5X3 + 3X2 - 2X - 3 

-150730227 X8 - X7 + X6 + 5X5 -11X4 + 8X3 -7X2 + 4X-1 3ZK = p2q3 

-150730227 X8 - 2X7 + 2X6 - X5 + 2X4 + X3 - 5X2 + 4X - 1 3ZK = P6- 

-150730227 X8-4X7 + 7X6-6X5 -3X4 + 9X3-X2 -5X-1 3ZK - 
p3p/3p//2 

-150730227 X8 + 2X6 - 2X5 - 3X4 - 7X3 - 11X2 - 6X - 1 3ZK = p6 

-178453547 X8 - 2X7 + 3X6 + X5 - 4X4 + 12X3 - 7X2 + 2X - 9 

-178453547 x8 - X7 - 2X6 + 6X5 - 1iX3 + 5X2 + 8X - 3 

-181398528 X8 - 2X6 - 2X5 - 2X3 - 2X2 + 1 3ZK = p6q 

-181398528 X8- 6X4 + 4X2 -3 3ZK = p2q3 

-182660427 X8 - 4X7 + 7X6 - 7X5 + 4X4 - X3 + 4X2 - 4X + 1 17ZK p3p/3q 

-182660427 X8 - X7 + 4X6 - 4X5 - 2X4 - 4X3 - 5X2 - X + 1 17ZK = PP/q3 

-265847707 X8 - 2X7 + 3X6 + X5 - 7X4 + 18X3 - 12X2 + 4X - 1 

-265847707 X8 - X7 - X6 + 5X5 - 3X4 + 2X3 - 6X2 + 9X -1 

-286557184 X8 - 5X6 + 6X4 + 3X2 - 1 23ZK -p3p3q 

-286557184 X8 + 5X6 + 6X4 - 3X2 - 1 23ZK'= PP'q3 

-325660672 X8 - 2X7 + 6X6 - 12X5 + 16X4 - lOX3 - 4X2 + 4X - 1 

-325660672 X8 - 2X7 + 4X6 - 12X5 + 16X4 - 18X3 + 1oX2 - 1 

-423564751 x8 - 2X7 + 2X6 - 4X5 - 4X4 + 20X3 - 14X2 + 13X - 4 

-423564751 X8 - X7 - 2X6 + 4X5 - 9X4 + 17X3 - 21X2 + 7X - 4 

-425329947 X8 - X7 - 3X6 + 2X5 + 4X4 + 3X3 - 5X2 - 7X - 3 3ZK = p6 

-425329947 X8 -6X4 -X2 -3 3ZK = p3p/3p//2 

-725594112 X8 - 6X4 - 4X2 - 3 32K = p3p/3p//2 

-725594112 X8 - 4X6 + 12X2 - 12 3ZK = P6P/P// 

-941391011 X8 - 2X7 - 2X6 + 17X5 - 32X4 + 31X3 - 15X2 + 4X - 1 29ZK - p3p/3q 

-941391011 X8 + 2X6 - 9X4 + 6X2 - 11 29ZK = pp'q3 

-999406512 X8 - 4X7 + X6 + 11X5 - 11X4 - X3 -t- 4X2 - X - 2 2ZK = PP- q 

-999406512 X8 - 4X7 + 7X6 - 7X5 - 2X4 + 11X3 - 2X2 - 4X - 2 2ZK = p3p/3q 

-1280239375 X8 - 2X7 + 5X5 - 6X4 - 1OX3 + 21X2 + 5X - 13 5ZK =- p3p/3q 

-1280239375 X8 - 4X7 + lOX6 - 16X5 + 18X4 - 14X3 + 4X2 + X - 1 52K = pp'q3 
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TABLE 11. (Continued) 

dK Polynomial Different 
factorisation 

-1327373299 X8 - X7 - 2X6 - 6X5 + 1OX4 + 15X3 - 6X2 - 5X - 7 

-1327373299 X8 - 3X7 + 2X6 - 3X4 + 11X3 - 13X2 + 15X - 11 

-1327373299 X8 - 6X6 - 5X5 + 19X4 + 21X3 - 18X2 - 36X - 5 

-1327373299 X8 - X7 - 4X6 + 4X5 + 4X4 - 9X3 + 2X2 - 3X - 5 

-1399680000 X8- 6X6 + 12X4 - 6X3 - 6X2 + 18X - 3 57K = pp 'q 

-1399680000 X8- 6X4 - 12X2 - 3 5K = p 3p/3q 

TABLE 12. Signature (4,2) Group T15 

dK Polynomial Different 
factorisation 

11662589952 X8- 4X7 + 2X6 - 4X5 + 12X4 + 12X3 - 4X - 2 

11662589952 X8 - 4X7 + 6X6 + 8X5 - 36X4 + 32X3 + 14X2 - 24X + 1 

TABLE 13. Signature (8,0) Group T15 

dK Polynomial Different 
factorisation 

119435644125 X8 -4X7 -3X6 +23X5 -3X4 - 37X3 +8X2 + 15X -5 5ZK =p2p/2p/2q 

17ZK =p2p/2p/2q 
119435644125 X8 X7-11X6+4X5+21X4 -4X3 -11X2+ X +1 5 =P2 p p/P//q2 

17ZK p2p/pp"q2 

131153375232 X8 - 12X6 + 45X4 - 54X2 + 12 

131153375232 X8 - 9X6 + 24X4 - 21X2 + 3 

186601439232 - 14X6 + 44X4 - 46X2 + 13 13ZK p2p12p"2 q 
186601439232 X8- 1OX6 + 32X4 - 38X2 + 13 13ZK p2p/p11q2 

TFABLE 14. Signature (8, 0) Group T23 

dK Polynomial Diff,eren,t 
factorisation 

21415471433 X8 - 15X6 - 8X5 + 66X4 + 61X3 - 57X2 - 53X + 1 

21415471433 X8- 4X7 - 4X6 + 26X5 + 2X4 - 52X3 + 31X + 1 

60276601856 X8 - 2X7 - 8X6 + 8X5 + 16X4 - 8X3 - 8X2 + 2X + 1 

60276601856 X8 - 4X7 - 4X6 + 24X5 + 4X4 - 42X3 + 4X2 + 22X - 7 

95281280000 X8 - 2X7 - 1OX6 + 14X5 + 16X4 - 22X3 - 2X2 + 8X - 2 5ZK =P 3p/3q 
95281280000 X8 - 14X6 - 14X5 - 38X4 + 54X3 - 1OX2 - 28X - 2 52K - pp q3 

108105297381 X8 - 4X7 - 5X6 + 29X5 - 14X4 - 25X3 + 1OX2 + 8X + 1 

108105297381 X8 - 3X7 - 9X6 + 21X5 + 33X4 - 33X3 - 54X2 --12X + 3 
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